
sparklife

@carsondial

* To squeeze more performance and less
memory usage, consider using arrays rather
than case classes or tuples (less overhead in
serialization and faster access)

* Use mapPartitions() instead of map() for
re-using heavy objects like connections and
parsers rather than creating them on a
per-item basis

 * If you need to create a custom partitioner
scheme, RDDs are your thing rather than
DataFrames/DataSets!

General Tips!

 * Avoid collect() and groupByKey()!

 * Try to filter down before performing
calculations on a data set

 * In order, prefer DataSets, DataFrames, and
then RDDs for your data structures.
DataSets give you type safety, massive
improvements on serializing, *and* access to
the Catalyst optimizer!

Broadcasts And Accumulators

 * Remember you can’t broadcast a RDD or
DataFrame!

 * Accumulators cannot be relied upon for
exact counts (if a task fails part way, the
count will not be reset, leading to double
counting!)

 * sc.register(acc, “Name”) will make the
accumulator show up in WebUI with ‘Name’

SparkSQL

 * Large schemas may break Hive and make
JSON reflection need to sample more of the
data set (consider using a fixed schema to
avioid reflection!)

* Take advantage of predicate push-down into
your data layers whereever possible

* Parquet ALL THE THINGS!

* Custom UDFs will be slower than inbuilt
SparkSQL UDF

Spark Streaming

 * spark.streaming.backpressure.enabled =
true (for backpressure support)

 * Experiment with blockInterval and batch
duration sizes and observe in WebUI whether
your application is keeping up with the stream

 * Invest in mapWithState tooling and avoid
updateStateByKey - will be faster and
considerably less memory-hungry

Testing

Links!

Apache Spark: https://spark.apache.org
MapWithState:
https://databricks.com/blog/2016/02/01/faster-stateful-strea
m-processing-in-apache-spark-streaming.html
Livy: https://github.com/cloudera/livy
Spark-Job-Server:
https://github.com/spark-jobserver/spark-jobserver
Checkpoints:
http://aseigneurin.github.io/2016/05/07/spark-kafka-achievin
g-zero-data-loss.html
Spark Streaming ATO 2015:
http://www.slideshare.net/ianpointer/all-things-open-spark-storm
-where-when
Arbiter: https://github.com/etsy/arbiter
Spark-flame: https://github.com/falloutdurham/spark-flame

va
l
in
pu
t1
 =
 s
c.
pa
ra
ll
el
iz
e(
Li
st
[(
In
t,
 D
ou
bl
e)
]

((
1,
 1
.1
),
 (
2,
 2
.2
),
 (
3,
 3
.3
))
).
to
DF

va
l
in
pu
t2
 =
 s
c.
pa
ra
ll
el
iz
e(
Li
st
[(
In
t,
 D
ou
bl
e)
]

((
1,
 1
.2
),
 (
2,
 2
.3
),
 (
3,
 3
.4
))
).
to
DF

as
se
rt
Da
ta
Fr
am
eA
pp
ro
xi
ma
te
Eq
ua
ls
(i
np
ut
1,
 i
np
ut
2,
 0
.1
1)

 /
/
eq
ua
l

spark-testing-base FTW!

sparklife
ops!!!

Metrics
send everything to graphite* with this one trick!

val spark
Conf = ne

w spark.S
parkConf(

)

 .set("sp
ark.metri

cs.conf.*
.sink.gra

phite.cla
ss",

 "or
g.apache.

spark.met
rics.sink

.Graphite
Sink")

 .set("sp
ark.metri

cs.conf.*
.sink.gra

phite.hos
t",

 gr
aphiteHos

tName)

val sc =
new spark

.SparkCon
text(spar

kConf)

* CSV, JSON, JMX, and Console sinks
are also available

Partitions

Deploying

* Start with a partition base of 3x cores in cluster* Increase by 1.5x and continue until you see performance decrease
* Lots of tasks finishing in short times? Reduce partitions
* Persist expensive RDDs/Datasets to disk with MEMORY_AND_DISK

* Consider a shadow cluster for new versions of applications (yay Kafka!)* Spark checkpointing is undefined across code changes! * Consider storing stream offsets in ZooKeeper and recreating state on start-up independently of checkpointing

Sizing
* 3 - 5 cores per executor

* Rough limit 64Gb per executor to avoid
long GC

* More executors > Fewer, l
arge executors

* Remember there’s YARN/Mesos/OS overhead too!

Log ALL THE THINGS

log as much as you can. Spark, YARN, HDFS, Kafka, OS, etc

Splunk, ELK, Datadog, Honeycomb will be your friend!
Garbage Collection

* G1GC collector is a good fit for Spark
* Use GC logging and WebUI to determine time spent in GC
* Lots of major GC? Increase executor memory or spark.memory.fraction
* Minor GC? Increase GC Eden
* May also need to increase -XX:ConcGCThreads to
 around 5-20 to speed up background marking

